みんなのスポべ

<ウェブサイト名>

<現在の時刻>

出典: 標準

International Affairs Students Current Students Alumni Faculty/Staff Careers--> TOHOKU UNIVERSITYCREATING GLOBAL EXCELLENCE Search 日本語 Contact Tohoku University --> About Facts & Figures Facilities Organization Chart History President's Message Top Global University Project Designated National University Global Network Promotional Videos Academics Undergraduate Graduate Courses in English Exchange Programs Summer Programs Double Degree Programs Academic Calendar Syllabus Admissions Undergraduate Admissions Graduate Admissions Fees and Expenses Financial Aid Research Feature Highlights Research Releases University Research News Research Institutes Visitor Research Center Research Profiles Academic Research Staff Campus Life International Support Office IT Services Facilities Dining & Shops Campus Bus Clubs & Circles News University News Research--> Arts & Culture Health & Sports Campus & Community Press Release--> International Visit Alumni Careers Events Exhibits Music Special Event Lecture Alumni--> Map & Directions Campus Maps & Bus--> Facilities Map--> TOHOKUUNIVERSITY About Academics Admissions Research Campus Life News Events International Affairs Students Current Students Alumni Faculty/Staff Promotional Videos Subscribe to our Newsletter Map & Directions Contact Jobs & Vacancies Emergency Information Site Map 日本語 Close Home Research News The World's Smallest High-performance Magnetic Tunnel Junction Research News The World's Smallest High-performance Magnetic Tunnel Junction 2020-12-08 A research group from Tohoku University led by current president Hideo Ohno has developed the world's smallest (2.3 nm) high-performance magnetic tunnel junctions (MTJs). This work is expected to accelerate the advancement of ultrahigh-density, low-power, high-performance non-volatile memory for a variety of applications, such as IoT, AI, and automobiles. The development of STT-MRAM - non-volatile spintronics memory - helps reduce the increasing power consumption in semiconductor device scaling. Crucial to integrating STT-MRAM in advanced integrated circuits is scaling magnetic tunnel junction - a core component of STT-MRAM - while improving its performance in data retention and write operation. Shape-anisotropy MTJ, proposed by the same group in 2018, has shown MTJ scaling down to single-digit nanometers while achieving sufficient data-retention (thermal-stability) properties. In the shape-anisotropy MTJ, thermal stability is enhanced by making the ferromagnetic layer thick. Once the thickness goes beyond a certain point, however, device reliability becomes degraded. Schematic illustrations of the shape-anisotropy MTJ (a) with the conventional single ferromagnetic structure (developed in 2018) and the multilayered ferromagnetic structure (b) using magnetostatic coupling. In the multilayered ferromagnetic structure, device performance can be improved by enhancing the interfacial anisotropy, and the two ferromagnets behave as a single magnet owing to magnetostatic coupling. This enables the ferromagnetic layer to become thinner while maintaining high thermal stability. © Butsurin Jinnai and Shunsuke Fukami. To address the issue in the conventional shape-anisotropy MTJ with a single ferromagnetic structure [Fig. 1(a)], the group employed a new structure that uses magnetostatically coupled multilayered ferromagnets [Fig. 1(b)]. The developed MTJs were successfully scaled down to 2.3 nm in diameter - the world's smallest MTJ size. They also exhibited high data retention properties up to 200°C and high-speed and low-voltage write operation down to 10 ns below 1 V at a single-digit-nanometer scale. "The performance proves the developed MTJs' capability to work with the future-generation advanced integrated circuits," said Butsurin Jinnai, first author of the study. "Because of its material compatibility with the standard MTJ material system, CoFeB/MgO, the proposed MTJ structure can be easily adopted in existing MTJ technology." The group believes that this will speed up the development of ultrahigh-density, low-power, high-performance memory for a variety of applications, such as IoT, AI, and automobiles. Publication Details: Title: High-Performance Shape-Anisotropy Magnetic Tunnel Junctions down to 2.3 nm Authors: Butsurin Jinnai*, Junta Igarashi*, Kyota Watanabe, Takuya Funatsu, Hideo Sato, Shunsuke Fukami, and Hideo Ohno (*: equal contribution) Conference: IEEE International Electron Devices Meeting (IEDM) Press release in Japanese Contact: Shunsuke FukamiResearch Institute of Electrical CommunicationEmail: s-fukamiriec.tohoku.ac.jpWebsite: http://www.spin.riec.tohoku.ac.jp/en/ Archives 2014&#24180; 2015&#24180; 2016&#24180; 2017&#24180; 2018&#24180; 2019&#24180; 2020&#24180; 2021&#24180; 2022&#24180; 2023&#24180; Page Top About Tohoku University Academics Admissions Research Campus Life News Events International Affairs Students Alumni Promotional Videos Subscribe to our Newsletter Map & Directions Contact Tohoku University Jobs & Vacancies Emergency Information Site Map Media Enquiries Parent & Family Support Public Facilities Contact Tohoku University

ポーカーテーブル 188betボーナス条件 テニススコアブック
Copyright ©みんなのスポべ The Paper All rights reserved.